The transcription factors NF-kappab and AP-1 are differentially regulated in skeletal muscle during sepsis.

Abstract

Sepsis is associated with increased muscle proteolysis and upregulated transcription of several genes in the ubiquitin-proteasome proteolytic pathway. Glucocorticoids are the most important mediator of sepsis-induced muscle cachexia. Here, we examined the influence of sepsis in rats on the transcription factors NF-kappaB and AP-1 in skeletal muscle and the potential role of glucocorticoids in the regulation of these transcription factors. Sepsis was induced by cecal ligation and puncture (CLP). Control rats were sham-operated. NF-kappaB and AP-1 DNA binding activity was determined by electrophoretic mobility shift assay (EMSA) in extensor digitorum longus muscles at different time points up to 16 h after sham-operation or CLP. Sepsis resulted in an early (4 h) upregulation of NF-kappaB activity followed by inhibited NF-kappaB activity at 16 h. AP-1 binding activity was increased at all time points studied during the septic course. When rats were treated with the glucocorticoid receptor antagonist RU38486, NF-kappaB activity increased, whereas AP-1 activity was not influenced by RU38486. The results suggest that NF-kappaB and AP-1 are differentially regulated in skeletal muscle during sepsis and that glucocorticoids may regulate some but not all transcription factors in septic muscle.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)